2,304 research outputs found

    RNA, the Epicenter of Genetic Information

    Get PDF
    The origin story and emergence of molecular biology is muddled. The early triumphs in bacterial genetics and the complexity of animal and plant genomes complicate an intricate history. This book documents the many advances, as well as the prejudices and founder fallacies. It highlights the premature relegation of RNA to simply an intermediate between gene and protein, the underestimation of the amount of information required to program the development of multicellular organisms, and the dawning realization that RNA is the cornerstone of cell biology, development, brain function and probably evolution itself. Key personalities, their hubris as well as prescient predictions are richly illustrated with quotes, archival material, photographs, diagrams and references to bring the people, ideas and discoveries to life, from the conceptual cradles of molecular biology to the current revolution in the understanding of genetic information. Key Features Documents the confused early history of DNA, RNA and proteins - a transformative history of molecular biology like no other. Integrates the influences of biochemistry and genetics on the landscape of molecular biology. Chronicles the important discoveries, preconceptions and misconceptions that retarded or misdirected progress. Highlights major pioneers and contributors to molecular biology, with a focus on RNA and noncoding DNA. Summarizes the mounting evidence for the central roles of non-protein-coding RNA in cell and developmental biology. Provides a thought-provoking retrospective and forward-looking perspective for advanced students and professional researchers

    Modelo de crescimento para árvores em povoamentos juvenis de sobreiro em Portugal

    Get PDF
    The juvenile and adult stages in cork oak are distinct because of the periodic debarking of the stem and branches that characterizes the adult stage. This fact implies the use of diameter under bark for the adult stage while diameter over bark is the natural variable for juvenile stands in growth and yield studies. Tree growth in the adult stage may also be affected by the periodic debarking. The differences between the two stages justify the development of different models for each of them. The objective of this paper is to develop an individual tree growth and yield model for juvenile cork oak stands for general application on the cork oak distribution area in Southern Portugal. The most important modules of this growth model were developed using data collected from a large number of trees in the juvenile stage, from several plots distributed around the South of Portugal. These modules were: an individual tree diameter growth model, a height-diameter model and a model for crown diameter prediction

    A Real-Time ANPC Inverter Digital Twin with Integrated Design-For-Trust

    Get PDF
    The demand for renewable energy has increased over the last few years, and so has the demand for greater expectations within the energy market. This increasing trend has been accompanied by more significant usage of internet-connected devices (IoT), leading to critical electrical infrastructure being connected to the internet. Implementing internet connectivity with such devices and systems provides benefits such as improving the system\u27s performance, facilitating irregularity and anomaly mitigation, and providing additional situational awareness for enhanced decision-making. However, enhancing the connected system with IoT introduces a drawback – a greater vulnerability to cyber-attacks. Cyber-attacks targeting critical infrastructure in the electrical sector have occurred in the United States and Ukraine. These cyber-attacks highlight and expose vulnerabilities that a system inherits when connecting to the internet. These attacks left thousands of customers without electricity for hours until operators could regain control of the electric utility grid. Therefore, to address the vulnerabilities of an internet-connected power electronic device, this work focused on the hardware layer of the system. Implementing a cyber-control system inside the hardware layer can significantly reduce the possibility of an attacker patching malicious controller firmware into a photovoltaic grid-connected inverter, thus mitigating the likelihood that the inverter becomes inactive a cyber-attack scenario. With this mitigation technique, if a cyberattack is successful and an attacker gains control of the network, a cyber-defense technique is in place to mitigate the impact of the cyber-attack. This additional protection layer was developed based on an innovative concept known as Digital Twin (DT). A DT, in this case, replicates an Active-Neutral Point Clamped (ANPC) inverter and was designed using a hardware language known as VHDL (Very High-SpeedIntegrated Circuit Hardware Description Language) and applied to Field-Programmable-GateArray (FPGA). The DT is embedded within the FPGA and contained in a controller board, the UCB (Unified Controller Board), developed by the University of Arkansas electrical engineering team. This UCB also contains two Digital Signal Processors (DSPs) responsible for generating associated signals to control an authentic physical inverter. These DSP signals are received and processed by the FPGA that implements the DT of an ANPC; in other words, it simulates in realtime the expected output of an actual ANPC inverter using the signals from the DSP. When a new firmware is ready to be patched, the DT provides output signals simulating behavior that a real ANPC inverter would generate with the new firmware. The new firmware is tested to check if it meets all the operational requirements established using a Design-For-Trust technique (DFTr). If the new firmware fails in at least one of the DFT tests, it is considered malicious and must be rejected. This work is divided into sections, such as Background, which explains the pieces that were used and the strategy behind this work; Process and Procedure, which explains the methodology that was adopted to prove the reliability and effectiveness of this work; Results and Discussion, where the simulations and results are described and explained; followed by Conclusion and Future work section, which concludes this work and adds possible future projects to continue this work furthe

    A Real-Time ANPC Inverter Digital Twin with Integrated Design-For-Trust

    Get PDF
    The demand for renewable energy has increased over the last few years, and so has the demand for greater expectations within the energy market. This increasing trend has been accompanied by more significant usage of internet-connected devices (IoT), leading to critical electrical infrastructure being connected to the internet. Implementing internet connectivity with such devices and systems provides benefits such as improving the system\u27s performance, facilitating irregularity and anomaly mitigation, and providing additional situational awareness for enhanced decision-making. However, enhancing the connected system with IoT introduces a drawback – a greater vulnerability to cyber-attacks. Cyber-attacks targeting critical infrastructure in the electrical sector have occurred in the United States and Ukraine. These cyber-attacks highlight and expose vulnerabilities that a system inherits when connecting to the internet. These attacks left thousands of customers without electricity for hours until operators could regain control of the electric utility grid. Therefore, to address the vulnerabilities of an internet-connected power electronic device, this work focused on the hardware layer of the system. Implementing a cyber-control system inside the hardware layer can significantly reduce the possibility of an attacker patching malicious controller firmware into a photovoltaic grid-connected inverter, thus mitigating the likelihood that the inverter becomes inactive a cyber-attack scenario. With this mitigation technique, if a cyberattack is successful and an attacker gains control of the network, a cyber-defense technique is in place to mitigate the impact of the cyber-attack. This additional protection layer was developed based on an innovative concept known as Digital Twin (DT). A DT, in this case, replicates an Active-Neutral Point Clamped (ANPC) inverter and was designed using a hardware language known as VHDL (Very High-SpeedIntegrated Circuit Hardware Description Language) and applied to Field-Programmable-GateArray (FPGA). The DT is embedded within the FPGA and contained in a controller board, the UCB (Unified Controller Board), developed by the University of Arkansas electrical engineering team. This UCB also contains two Digital Signal Processors (DSPs) responsible for generating associated signals to control an authentic physical inverter. These DSP signals are received and processed by the FPGA that implements the DT of an ANPC; in other words, it simulates in realtime the expected output of an actual ANPC inverter using the signals from the DSP. When a new firmware is ready to be patched, the DT provides output signals simulating behavior that a real ANPC inverter would generate with the new firmware. The new firmware is tested to check if it meets all the operational requirements established using a Design-For-Trust technique (DFTr). If the new firmware fails in at least one of the DFT tests, it is considered malicious and must be rejected. This work is divided into sections, such as Background, which explains the pieces that were used and the strategy behind this work; Process and Procedure, which explains the methodology that was adopted to prove the reliability and effectiveness of this work; Results and Discussion, where the simulations and results are described and explained; followed by Conclusion and Future work section, which concludes this work and adds possible future projects to continue this work furthe
    corecore